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Modification of the Fritsch–Buttenberg–Wiechell rearrangement:
a facile route to unsymmetrical butadiynes
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Abstract—A modification of the Fritsch–Buttenberg–Wiechell rearrangement has been used to form unsymmetrically substituted
1,3-butadiynes from 1,1-dibromo-olefin precursors. The reaction proceeds via lithium–halogen exchange, followed by migration of
the aryl or alkynyl moiety to provide the butadiyne framework. The facile formation of the dibromo-olefins in three steps from
commercially available aryl aldehydes or carboxylic acid chlorides makes this procedure an attractive alternative to traditional
methods for butadiyne synthesis. © 2001 Elsevier Science Ltd. All rights reserved.

The rigid and conjugated nature of the 1,3-butadiyne
moiety makes it a useful building block that has been
employed in the formation of new photonic materials,1

oligomers and polymers,2 macrocycles,3 as well as
supramolecular scaffolds.4 In addition, this functional
group has a rich history as a precursor for single crystal
polydiacetylene formation via topochemical polymeri-
zation.5

The synthesis of symmetrically substituted butadiynes is
relatively straightforward using Hay6 or Eglinton/
Galbraith7 conditions, which proceed via oxidative
homocoupling of terminal acetylenes with Cu(I)/Cu(II)
catalysis.8 Hay or Eglinton/Galbraith conditions are
not suitable, however, for the synthesis of unsymmetri-
cal substituted butadiynes, as mixtures of products are
usually encountered. The cross-coupling of terminal
acetylenes with alkynyl bromides or iodides, the
Cadiot–Chodkiewicz9 coupling, often provides a useful
method for accessing unsymmetrical diynes. The pre-
dominant limitation of this and related methods,10 how-
ever, is that they all require the prior synthesis of a
terminal alkyne as one coupling partner and an alkynyl
halide as the other.

Palladium catalyzed cross-coupling reactions of termi-
nal alkynes with aryl halides or triflates, such as the
Sonogashira reaction,11 are an alternative route into the

formation of aromatic 1,3-butadiynes. Using
PdCl2(PPh3)2 or Pd(PPh3)4, these reactions generally
work quite well with aryl iodides and with electron-
deficient aryl bromides. With unactivated aryl bro-
mides, however, rigorous conditions are often
necessary.

The Fritsch–Buttenberg–Wiechell (FBW) rearrange-
ment is a well precedented technique for the formation
of alkynes.12,13 We recently reported a modification of
this method and demonstrated that it is suitable for the
formation of a variety of polyynes via alkyne migration
in carbene/carbenoid intermediates.14,15 The high
propensity for alkyne and/or aryl migration suggested
that dibromo-olefins such as 1 would serve well as
precursors to diynes 3. This reaction would involve a
sequence of lithium halogen exchange to give the car-
bene/carbenoid intermediate 2 followed by rearrange-
ment to 3. We now report the successful synthesis of a
range of unsymmetrical 1,3-butadiynes16 via this
method. In contrast to other methods of butadiyne
formation that rely on arylyne or aryl halide precur-
sors, the method described herein utilizes aryl aldehydes
or aryl carbonyl chlorides as starting materials. As a
result, this route is particularly useful for the formation
of electron-rich aryl diynes that are unactivated toward
palladium catalyzed alkynylations.
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The general synthetic route to trimethylsilyl protected
aryl 1,3-butadiynes is outlined in Scheme 1.17 An excess
of trimethylsilyl acetylene (1.25 equiv.) is lithiated with
n-BuLi (1.2 equiv.) at −78°C in Et2O to give the
acetylide 4. The aryl carboxaldehyde (1 equiv.) is added
at −78°C, and the reaction mixture was slowly warmed

to ca. −10°C until the reaction was judged complete by
TLC. The reaction is cooled again to −78°C and
quenched with aqueous NH4Cl.18 As a result of the
slight excess of acetylide, complete reaction with the
aldehyde can generally be effected, and the resultant
alcohols 5 can be isolated pure and in high yield
following aqueous work-up.

Oxidation of alcohol 5 to ketone 6 with PCC is accom-
plished at rt in CH2Cl2, with reaction times of less than
1 h for most derivatives. Concentration of the reaction
mixture, followed by filtration through a short plug of
silica affords the crude ketones 6a–h, which are of
sufficient purity to be carried on to the dibromo-olefi-
nation step.19 They can, however, be isolated pure by
flash chromatography, as demonstrated for ketones 6b
and 6e. The oxidation of ferrocenyl alcohol 5h was
particularly difficult with PCC, affording only 36%
yield. Using BaMnO4 as the oxidant,20 however, ketone
6h could be obtained in 94% yield. The well-established
dibromo-olefination method using PPh3/CBr4 was
employed to provide derivatives 7.21 For sterically
unhindered ketones, the dibromo-olefins can be formed
at rt in CH2Cl2 in 1–2 h. For ketones 6e and 6h,
however, reactions were sluggish at rt in CH2Cl2, and
they were therefore carried out in benzene at reflux. In
all cases, the dibromo-olefinic product is considerably
less polar than the ketone precursor, as well as any
by-products of the reaction, and can be easily purified
by column chromatography.

To date, the conversion of the dibromo-olefins to the
desired diynes 8 has been more successful in hexanes, as
opposed to more polar solvents such as Et2O or THF.22

Thus, diyne formation is effected by the dropwise addi-
tion of n-BuLi to a hexanes solution of 7 cooled to
−78°C. The mixture is subsequently warmed to ca.
−40°C over 0.5 h to ensure complete rearrangement of
the carbenoid intermediate and then quenched at
−78°C. If anhydrous reaction conditions have been
maintained, the diyne is generally the sole product
observed by TLC analysis.23 The diynes can thus be
isolated pure in good to excellent yields by passing the
concentrated reaction mixture through a plug of silica
to remove more polar, baseline material.24

Scheme 2 outlines an alternative pathway to aryl 1,3-
diynes that exploits readily available aryl acid chlorides.
Friedel–Crafts acylation of acid chlorides 9a–c with
bis(trimethylsilyl)acetylene in the presence of AlCl3
afforded ketones 10a–c in excellent yields.25 Dibromo-
olefination of 10a–c generated 11a–c in 60–91% yields.
Subjecting dibromides to n-BuLi at −78°C according to
the standard protocol affords 4-t-butylphenyl diyne
12a24 in 88% yield, 4-hexylphenyl diyne 12b in 70%
yield, and the trimethoxy aryl diyne 12c in 51% yield.

This method for diyne synthesis is also extendable to
systems other than those with trimethylsilylethynyl sub-
stituents. As shown in Scheme 3, rearrangement of
alkyl substituted dibromo-olefins 13a and 13b affords
1,3-diynes 14a and 14b in high yields.26

Scheme 1. Reagents and conditions : (a) Et2O, −78°C; (b) PCC,
Celite, mol. sieves (4 A� ), CH2Cl2, rt; (c) PPh3 (2 equiv.), CBr4,
CH2Cl2 @ rt or C6H6 @ reflux; (d) n-BuLi, −78 to −40°C,
hexanes.

Table 1. Synthesis of diynes 8a–h
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Scheme 2. Reagents and conditions : (a) TMSC�CTMS, AlCl3,
CH2Cl2, 0 to 25°C; (b) PPh3 (2 equiv.), CBr4, CH2Cl2; (c)
n-BuLi, hexanes, −78 to −40°C.
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Scheme 3.

In summary, the modified FBW rearrangement
described herein provides a facile route to a range of
aryl diyne systems. This synthetic route offers several
attractive features versus more commonly employed
palladium coupling methods including (1) the wide
range of commercially availability of aryl aldehydes
and carboxylic acid precursors, (2) applicability to elec-
tron-rich aryl groups, (3) generally rapid reaction times
and easy purification/isolation.27
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